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Memory effects and nonequilibrium transport in open many-particle quantum systems
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Full understanding of the relaxation mechanisms and far-from-equilibrium transport in modern mesoscopic
structures requires that such systems be treated as open. We therefore generalize some of the core elements of
the Kadanoff-Baym-Keldysh nonequilibrium Green’s function formalism, inherently formulated for closed
systems, to treatment of an open system, coupled with its environment. We define the two-time correlation
functions and analyze the influence of the memory effects on the open-system transport. In the transient
regime, the two-time correlation functions clearly show four distinct terms: a closed-system-like term, an
entanglement term, and two memory terms that depend explicitly on the initial state of the environment. We
show that it is not possible to completely eliminate the influence of the environment by a fortunate choice of
the initial state, and approximating the system as closed is valid only in the limit of negligible system-
environment coupling, which is never the case in the transient regime. We derive the transport equations for
transients that properly account for the system-environment coupling. On the other hand, we address the
important issue of transport in a far-from-equilibrium steady state. We show that, once a steady state is reached,
the balance between the driving and relaxation forces implies that the two-time correlation functions regain a
closed-system-like form, but with an effective, modified system Hamiltonian, and with thesystem statistical
operator unrelated to that of the initial state. We emphasize that the difference between the transient and the
far-from-equilibrium steady-state regimes, crucial for theoretical investigation of nonequilibrium quasiparticle
transport, effectively lies within the different relative magnitude of the combined entanglement and memory
terms with respect to the closed-system-like term in two-time correlation functions.
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I. INTRODUCTION

The past few decades have brought much activity in
fields of mesoscopic and nanoscale physics@1–3#. Today,
conventional silicon-based semiconductor devices
smaller than ever, typical dimensions being only a few t
few tens of nanometers@4#, and low-dimensional semicon
ductor structures offer a variety of exciting features, bo
fundamentally interesting~e.g., conductance quantization
quantum point contacts@5,6#, Coulomb blockade, and single
electron tunneling in quantum dots@7,8#, etc.!, and techno-
logically applicable ~e.g., high-mobility two-dimensiona
electron gas in semiconductor heterostructures@9#!. On the
other hand, ultrashort laser pulse excitations are finally p
viding us with experimental insight into the femtosecond
laxation properties of materials@10#. Consequently, our
present understanding of electronic transport is being c
lenged in multiple ways, and it has become evident that
typical time and space scales of modern condensed m
physics have dramatically shrunk. Today, a plausible tra
port theory ought to describe small, very inhomogene
structures, and be able to adequately address the fast r
ation processes, as well as far-from-equilibrium steady st
@2,11–13#.

The Kadanoff-Baym-Keldysh nonequilibrium Green
function ~NEGF! formalism @14,15# is known to be a very
general and powerful technique for theoretical treatmen
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the evolution of nonequilibrium interacting many-partic
systems. Variants of this technique have been used in v
ally all disciplines of theoretical physics@1,2,16,17#. The ap-
peal of the NEGF formalism lies in the perturbation expa
sion, which enables one to elegantly obtain results by pa
summation of the diagrams that are dominant within a c
tain approximation, provided that the initial state adm
Wick’s decomposition ~this important question was ad
dressed in detail by Danielewicz@18#!. However, the NEGF
formalism is, above all, formulated for closed systems. T
state of the environment, if important, is assumed known
unaffected by the feedback from the system. The envir
ment influences the system through a correction to
Hamiltonian, but no degrees of freedom besides the syste
are present. Thus, the essence of the NEGF formalism is
the many-body system of interest obeys Hamiltonian dyna
ics. The evolution is perfectly reversible, and one has
well-defined Heisenberg and interaction pictures, and, con
quently, the definitions of the Green’s functions and the p
turbation expansion. Finally, for the analysis of transpo
evaluation of the first few lowest-order Green’s functions
usually quite sufficient to obtain quantities such as the c
rent density, etc.

Here we see a principal constraint for the use of
NEGF formalism in the treatment of far-from-equilibrium
transport in mesoscopic structures. A far-from-equilibriu
steady state of the system of interest is achieved throug
balance between the driving and relaxation forces, and c
not be uniquely related to the initial system microstate@19#.
This irreversibility in the behavior is due to the fact that t
system of interest~the current-carrying electrons! is not a
©2003 The American Physical Society22-1
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closed system, but rather an open subsystem of a large
teracting closed system~containing phonons, etc.!. The envi-
ronment is indeed affected by the system, especially in
transient regime~e.g., nonequilibrium phonons@20#!, and the
memory effects become important—the dynamics of an o
system is non-Hamiltonian. Full treatment of open syste
traditionally relies on the calculation of the system reduc
density matrix, but such an approach is feasible only in fa
small systems, such as molecules@21#. In many-body sys-
tems, the reduced density matrix is not only impossible
calculate, but is actually unnecessary to analyze transpor
from experience with closed systems, we know that the fi
few lowest-order Green’s functions should suffice. Howev
the non-Hamiltonian dynamics makes it impossible
straightforwardly define the open system’s counterparts
the Heisenberg and interaction pictures: the memory term
the equation of motion is a crucial element that has no co
terpart in closed systems, and thus requires a complete
sessment of many notions lying at the very core of the NE
formalism as we know it.

In this paper, motivated by the need to deepen the un
standing of transport in mesoscopic structures, we genera
some of the core elements of the nonequilibrium Gree
function formalism to treatment of transport in open qua
tum systems; namely, we first generalize the two-time co
lation functions to open systems, in such a way that th
physical meaning is retained, and their form tends to tha
the closed system when the system-environment couplin
turned off. Haake@22# addressed the evaluation of an op
system’s correlation functions, but his approach requires
formation about the entire evolution of the environme
which is precisely what we wish to avoid here. Thus, o
generalization of the two-time correlation functions is bas
on the use of the so-called partial-trace-free approach@23#,
which enables one to avoid calculation of the full syste
1environment quantities when one is interested only in
system. Definition of the two-time correlation functions is
the very core of theoretical analyses of quasiparticle tra
port ~we show how other single-particle Green’s functio
are easily defined!. In this way, we are able to calculate th
functions with as little information about the environment
necessary. At this point, we are equipped to analyze the
pact of the system-environment coupling on the transpor
the open system, and we focus our attention on two
tremely distinct regimes: the transient regime and the
from-equilibrium regime. In the transient regime, we clea
demonstrate that there are four different terms appearin
the two-time-correlation functions. In addition to the close
system-like term, there are two memory terms, contain
the information on the initial state of the environment.
addition, there is an entanglement term, which we show c
not be lost through any manipulation of the initial state of t
environment. This term relates the initial state of the syst
to the present state of the system, sampling the state o
environment at one point in the meantime. This analysis
complemented by the equations of motion for the two-ti
correlation functions for transients, and by some specific
lustrative examples. On the other hand, we analyze the
havior of the two-time correlation functions in a far-from
06612
in-

e

n
s
d
y

o
as,
st
r,

f
in
n-
as-
F

r-
ze
’s
-
-

ir
f
is

-
,
r
d

e
t
s-

-
f

x-
r-

in
-
g

n-

m
he
is
e
l-
e-

equilibrium steady state. We point out that one c
rigorously arrive at the fundamental, intuitively plausib
qualities of the far-from-equilibrium steady state, which a
the facts that a balance between the relaxation and the d
ing forces is obtained and that the statistical operator in s
a state cannot be uniquely related to the initial state. Due
the gain-loss balance, we assert that the two-time correla
functions for a far-from-equilibrium steady state are akin
those of a closed system, but with an effective, modifi
Hamiltonian, and with a density matrix that is unrelated
that of the initial state. We conclude that, as far as quasip
ticle transport in open systems is concerned, the transient
steady state regimes can be distinguished by the rela
magnitude of the combined entanglement and memory te
with respect to the closed-system-like term: memory and
tanglement are very important during transients and virtua
nonexistent in a steady state.

In Sec. II A, we introduce the elements of the partia
trace-free approach, which allow us to define the op
system two-time correlation functions in Sec. II B. In Se
III, transport in the transient regime is addressed, and
equations of motion for the two-time correlation functio
are derived. In Sec. IV, a far-from-equilibrium steady sta
is analyzed. We conclude with a summary and outlook
Sec. V.

II. TWO-TIME CORRELATION FUNCTIONS
FOR OPEN SYSTEMS

Our principal goal in this section is to generalize t
closed system’s two-time correlation functions of the ty
Tr@rHaH(t8)bH(t)#, wherer is the ~closed! system density
matrix, anda andb are two system operators, all given in th
Heisenberg picture, as indicated by the subscriptH ~no sub-
script indicates the Schro¨dinger picture!. A definition of the
correlation functions has been attempted previously
Haake@22#, but, in his work, one was required to use the fu
evolution of the open system1environment, which is pre-
cisely what we wish to avoid as best we can. A generali
tion of the two-time correlation functions will eventually en
able us to define the core transport variables: the ‘‘grea
than’’ and ‘‘less than’’ single-particle Green’s function
given for closed systems by

iG.~1,18!5Tr@rHcH~ t !cH
1~ t8!#,

6 iG,~1,18!5Tr@rHcH
1~ t8!cH~ t !#, ~1!

where the upper sign refers to bosons and the lower sig
fermions. The field operators, at this point, can be the c
ation or annihilation operators at a point in space or in
single-particle state. The following approach can easily
generalized to higher-order Green’s functions.

For a closed system with Hamiltonianh(t), which may be
time dependent due to external driving forces, the den
matrix r in the Schro¨dinger picture obeys the quantum Liou
ville equation@24–26#
2-2
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dr~ t !

dt
52 i @h~ t !,r~ t !#[2 iL ~ t !r~ t !, ~2!

whereL is the Liouville superoperator~superoperators will
be denoted by capital letters!. With Tc (Ta) denoting the
chronological~antichronological! time ordering, andQ being
the Heaviside step function,

r~ t !5U~ t,0!r~0!,

U~ t,t8!5Q~ t2t8!Tc expS 2 i E
t8

t

dt L~t! D
1Q~ t82t !Ta expS i E

t

t8
dt L~t! D . ~3!

If a andb are time-independent operators in the Schro¨dinger
picture, it is easily shown that the two-time correlation fun
tions can be written as

Tr@rHaH~ t8!bH~ t !#5Tr$aU~ t8,t !@br~ t !#%. ~4!

That is, when written in the Schro¨dinger picture, the desired
expectation value actually means that, at timet, b acts onr
~actually,b acts on the ‘‘ket’’ part ofr!; thenbr(t) evolves
under the quantum Liouville equation@i.e., is the argumen
of U(t8,t)], until a acts on the result at timet8. We will see
that the form on the right-hand side of Eq.~4! is actually the
form that allows for a generalization to open systems, wh
keeping the proper physical meaning. So we first need
investigate how exactly the density matrix of an open sys
evolves.

A. Open-system reduced density matrix and the
partial-trace-free approach

Consider an open systemS, interacting with its environ-
ment E, so that the system1environment (S1E) is closed,
and possibly influenced by external driving fields that a
assumed known and unaffected by the feedback fromS
1E. The Hilbert spaces of the environment and the syst
HE andHS , are assumed to be of finite dimensionsdE and
dS , respectively, yielding for theS1E Hilbert spaceHS1E
5HE^ HS . The evolution of the totalS1E density matrixr
is given by the quantum Liouville equation~2!, with the
Hamiltonianh consisting of the system parthsys51E^ hS ,
the environment parthenv5hE^ 1S , and the interaction par
hint , so thath5hsys1henv1hint . Obviously, the correspond
ing Liouville operator is of the formL5Lsys1Lenv1L int .
Now, the evolution of the open systemS is described by the
reduced density matrixrS5TrE(r), with TrE(¯) denoting
the partial trace over the environment states. To deduce
rS evolves, we use the projection-operator technique ba
on the uniform environment density matrix@23#

r̄E[dE
21

•1dE3dE
, ~5a!

which introduces projection operatorsP̄ and Q̄ on HS1E
2

5(HE^ HS)2 ~the Liouville space ofS1E, i.e., the space o
all operators onHS1E) by the relations
06612
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P̄x5 r̄E^ TrEx, Q̄512 P̄, xPHS1E
2 . ~5b!

The projector operators, in general, were introduced by
kajima @24#, Zwanzig@25#, and Mori @26#, for obtaining the
equation of motion forrS . In the conventional projection
operator approach, the equation of motion forPr is solved,
where P is a projector generated by an arbitrarily chos
density matrixrE of the environment, using a relation o
type ~5b!, i.e., throughPx5rE^ TrEx, xPHS1E

2 . Then the
partial trace over the solution is taken to obtain the syst
density matrix, as TrE(Pr)5TrE(r)5rS . However, we
have recently shown@23# that the above choice ofP̄, Eq.
~5b!, is such that the partial trace with respect to the en
ronment becomes unnecessary~the so-calledpartial-trace-

free approach!; namely,P̄ is a projector, thus having eigen
values 1 and 0, with corresponding eigenspaces being
dimensionsdS

2 and dS
2(dE

221), respectively. TheS1E Hil-
bert space can be represented as a direct sum of these
mutually orthogonal eigenspaces ofP̄, i.e.,

HS1E
2 5~HS1E

2 ! P̄51% ~HS1E
2 ! P̄50 . ~6!

For any given basis$uab&ua,b51,...,dS% in HS
2 ~the Liou-

ville space of the system, i.e., the space of operators ac
on the system’s Hilbert spaceHS), there is a simply con-
structed basis$uab&ua,b51,...,dS% in (HS1E

2 ) P̄51 ~see Ap-
pendix A! such that, for anyxPHS1E

2 ,

~TrEx!ab5AdE~ P̄x!ab. ~7!

This basis in the unit eigenspace is complemented by
orthonormal basis in the zero eigenspace. According to
decomposition~6!, a vectorxPHS1E

2 can be represented i

the complete eigenbasis ofP̄ by a column

x5Fx1

x2
G , ~8a!

and the projectors are represented by

P̄5F1 0

0 0G , Q̄5F0 0

0 1G . ~8b!

On the other hand, taking the partial trace with respect tE
of anyS1E observablex gives what the system experienc
of this observable. It is important to stress that, from now
we will make no distinction between a system variablexS
5TrEx and its representation column in the basis$uab&% of
HS

2. Therefore, forxS being the representation column o
xS5TrEx in the basis$uab&% of HS

2, according to Eq.~7! we
obtain

xS5x1AdE. ~9!

In the eigenbasis ofP̄, a superoperatorA that acts onHS1E
2

is, in general, represented by a block-matrix form
2-3
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A5FA11 A12

A21 A22
G . ~10!

If the operatorAsys is a system operator, i.e., an operator
the formAsys5I E^ AS , whereAS acts onHS

2, thenAsyscom-

mutes with P̄, and is therefore represented by a bloc
diagonal form in the eigenbasis ofP̄. Furthermore, the
block-diagonal form is such that the upper-left block mat
is exactly the one representingAS in the basis$uab&% ~see
Appendix B!, namely,1

Asys5I E^ AS5FAS 0

0 A2
G . ~11!

Returning to the evolution of the system1environment, de-
scribed by the Liouvuille equation~2! and its solution~3!,
in the eigenbasis of P̄ defined above, the system
1environment total density matrix is given by

r5Fr1

r2
G , rS5r1AdE. ~12!

The Liouville operator and the evolution operator are giv
by the block forms

L~ t !5FL11~ t ! L12~ t !

L21~ t ! L22~ t !
G ,

U~ t,t8!5FU11~ t,t8! U12~ t,t8!

U21~ t,t8! U22~ t,t8!
G , ~13!

whereL215(L12)
† ~L is Hermitian!, andU is unitary. When

Eqs. ~2! and ~3! are written out in their matrix representa
tions, we obtain

dr1

dt
52 iL 11~ t !r1~ t !2 iL 12~ t !r2~ t !,

dr2

dt
52 iL 21~ t !r1~ t !2 iL 22~ t !r2~ t !, ~14!

and

r1~ t !5U11~ t,t8!r1~ t8!1U12~ t,t8!r2~ t8!,

r2~ t !5U21~ t,t8!r1~ t8!1U22~ t,t8!r2~ t8!. ~15!

There are several very important features of Eqs.~13!–~15!.
First, L11 is of the commutator-generated form, i.e., it corr
sponds to an effective system HamiltonianhS,eff given by

hS,eff5hS1TrE~hint!/dE , ~16!

1We will make no distinction between a system superoperatorAS

on HS
2 and its representation matrix in$uab&%. The relations that we

obtain later are essentially basis independent, since, for any ch
basis$uab&% in HS

2, there is a unique basis$uab&% in (HS1E
2 ) P̄51

such that Eqs.~7!–~11! hold.
06612
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which accounts for the well-known first-order correction
the system energy spectrum@11,27#, due to the coupling with
the environment~see Appendix C!. Secondly, it is clear tha
the upper-left block matrix of anyS1E superoperator can b
dubbed the ‘‘purely system part’’ of that operator. The term
in Eq. ~13! that effectively account for the system
environment coupling are the off-diagonal termsL12 and
L215(L12)

†. In order for the system to evolve as decoupl
from the environment, we must have

iL12r2i!iL11r1i . ~17!

This requirement is obviously satisfied when the interact
vanishes (hint50 implies L1250), but we argue in Sec. IV
that, even in the case of appreciable coupling, when a
ance between the driving and the relaxation forces
achieved, this criterion is satisfied. This actually defin
reaching a far-from-equilibrium steady state.

B. GÌ and GË for open systems

In the system Liouville spaceHS
2, multiplication of the

reduced system density matrixrS by the system creation an
annihilation operatorscS

† andcS can be described by supe
operatorsC† and C acting onrS as a vector inHS

2. It is
understood that the Liouville space is constructed to all
for this action, i.e., that, in addition to the states correspo
ing to a given number of particles~e.g., electrons!, which are
used to constructrS , at least the states with61 electron are
included. This is a computational rather than a theoret
requirement, and it suffices when one is interested only
two-time correlation functions, meaning that at most one p
ticle is created~annihilated!. Accommodation of higher-orde
Green’s functions will require further augmentation of t
system Liouville space during computation.

Now, within the total system1environment, annihilation
of a system particle can be described by a superoperatoC,
of the formC5I E^ CS , which, according to Eq.~11!, has
the following block-diagonal form in the eigenbasis ofP̄:

C5FCS 0

0 C2
G . ~18!

Obviously, the creation operatorcS
† will be associated with

C†.
We are now almost fully equipped to define the two-tim

correlation functions for open systems. Following the disc
sion of the introductory part of this section, a definition
G.(1,18) for the open system requires that, first, a syst
particle is created at timet8 @i.e., C† acts onr(t8)]; then
C†r evolves untilt, when a particle is annihilated. Howeve
we need only the system’s point of view of this action, not the
full system1environment’s. So, we define two auxiliar
variablesrC†,t8(t) andrC,t8(t) such that

rC†,t8~ t8!5C†r~ t8!, rC†,t8~ t !5U~ t,t8!rC†,t8~ t8!,

rC,t8~ t8!5Cr~ t8!, rC,t8~ t !5U~ t,t8!rC,t8~ t8!. ~19!

en
2-4
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We then define the open system’s ‘‘greater than’’ and ‘‘le
than’’ Green’s functions as

iGS
.~1,18![TrS@CSrS

C†,t8~ t !#,

6 iGS
,~1,18![TrS@CS

†rS
C,t~ t8!#. ~20!

These definitions have exactly the required physical me
ing. The information provided by these functions is cle
after writing Eqs.~20! as

iGS
.~1,18!5TrS@CSU11~ t,t8!CS

†rS~ t8!#

1AdETrS@CSU12~ t,t8!C2
†r2~ t8!#,

6 iGS
,~1,18!5TrS@CS

†U11~ t8,t !CSrS~ t !#

1AdETrS@CS
†U12~ t8,t !C2r2~ t !#. ~21!

There are two terms on the right-hand side of Eqs.~21!. But,
before proceeding with the analysis of Eq.~21!, it is impor-
tant to recall that there are two classes of states inHS1E

2 : the
first ones belong to the (HS1E

2 ) P̄51 , and due to the isomor
phism given by Eq.~7! we call them thepure system states.
States from (HS1E

2 ) P̄50 , the orthocomplement to
(HS1E

2 ) P̄51 , we dubbedentangled states, as they contain the
information on the entanglement of the system and envir
ment states; namely, by entanglement one usually consi
any deviation of theS1E density matrix from a tensor prod
uct of the subsystems’ density matrices. Here, however,
are interested in whether or not the totalS1E density matrix
deviates fromr̄E^ rS , i.e., whetherr2Þ0. In Sec. III B, we
will see that this particular form has special features from
information-entropy standpoint.

We now see that each of the equations~21! contains two
terms: one that describes propagation between pure sy
states and pure system states, and one that describethe
transfer of information between the entangled and p
states. In Fig. 1, we have depicted the contributions from t
two terms toG.. It is important to note that, if we were t
neglect the system-environment coupling, i.e., if the sys
were treated as closed, only the first term@Fig. 1~a!# would
survive, so propagation between pure system states and
system states isclosed-system-like.

An illustration of the solidity of our definition~21! is the
form of the average density at a given point; namely,

^nS~r ,t !&56 iGS
,~r t,r t !5TrS@CS

†~r !CS~r !rS~ t !#

5TrS@cS
†~r !cS~r !rS~ t !#5TrS@n~r !rS~ t !#,

~22!

since, from Eq.~3!, U(t,t)51, so U11(t,t)51, U12(t,t)
50, and the result above is exactly what is expected.

Having properly definedG. andG,, we can now define
the chronological and antichronological Green’s functio
Gc andGa as

GS
c~1,18!5Q~ t2t8!GS

.~1,18!1Q~ t82t !GS
,~1,18!,
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a~1,18!5Q~ t82t !GS

.~1,18!1Q~ t2t8!GS
,~1,18!.

~23!

Writing down the equations of motion for these time-order
Green’s functions would be the next logical step. Howev
since we do not wish to specify anything about the inter
tion, and thus cannota priori expect to obtain a Martin-
Schwinger-type hierarchy, we will not proceed along the
lines. Rather, we will focus our interest on the importance
the memory effects on transport.

III. TRANSPORT IN THE TRANSIENT REGIME

Transient regimes have, so far, received fairly little the
retical attention, compared to steady-state regimes. First
transient regime is virtually irrelevant when the main pu
pose is the description of the steady-state regime, as the
tem tends to ‘‘forget’’ about the unimportant details of i
past. Second, the conceptual difficulties of formulating a
solving transport equations within the transient regime h
been significant. Third, until the femtosecond laser excitat
enabled insight into the short-time behavior of systems,
fine details of transport on these time scales were experim
tally unverifiable.

Recently, transients have been receiving enhanced t
retical attention@16,28#. For example, much work on th
treatment of initial correlations in nonequilibrium Green
functions has been done recently@29#. Ladder-type diagrams
have been obtained as a correction to the diagrammatic
pansions due to the initial correlations. However, we belie
that the introduction of initial correlations, which are u

FIG. 1. Illustration of the two terms in the definition ofGS
. ,

from Eq. ~21!. ~a! A particle is created att8 among the pure system
states, and annihilated att, also among the pure system states.~b! A
particle is created among the entangled states att8, and due to this
event the information about the state of the environment beco
apparent att, when the particle is annihilated.
2-5
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doubtedly very important, may be insufficient to describe
relaxation. Here, we will try to achieve an understanding
transient processes in general, within the present appro
and without necessarily specifying the details of the Ham
tonians. We will investigate how exactly the memory effe
influence the near-equilibrium transport; i.e., how the state
the environment and the entanglement between the sy
and the environment states are observed in the open sys
evolution.

During transient processes, the state ofS1E can be
tracked back to the initial state at timet0 , which is assumed
to be given by a known density matrixr(t0). There usually
exists a typical relaxation timet relax, during which the tran-
sient may be considered to occur, and after which a ste
state is achieved. ConsiderGS

,(1,18) in the transient regime
with the initial time set tot0 , and t0,t,t8!t relax. Using
Eqs.~21! and ~15!, we obtain

6 iGS
,~1,18!5TrS@CS

†U11~ t8,t !CSU11~ t,t0!rS~ t0!#

1TrS@CS
†U12~ t8,t !C2U21~ t,t0!rS~ t0!#

1AdETrS@CS
†U11~ t8,t !CSU12~ t,t0!r2~ t0!#

1AdETrS@CS
†U12~ t8,t !C2U22~ t,t0!r2~ t0!#.

~24!

Of course,GS
, measures the probability of ending up in th

same system state, after having annihilated a particle at
t at a given positionr , and then having created it at a~later!
time t8 at r 8. Apparently, there are four terms that contribu
to this correlation function, and they are depicted in Fig.
The first term is theclosed-system-like term@Fig. 2~a!#, the
only one that survives if the coupling betweenS and E is
turned off ~i.e., if L12→0); the name given to it has to d
with the fact that this term describes only the influence t
pure system states have on pure systems states, where
information on the state of the environment is never inc
porated. The last two terms@Figs. 2~c! and 2~d!# are the
so-calledmemory terms, as they start with the entangle
states, so they contain the information on theinitial state of
the environment. These terms are both of first order in th
coupling L12. The second term@Fig. 2~b!# is dubbed the
entanglement term, as it does start and end with pure syste
states, but in between the information on the state of
environment is sampled. This term is of second order inL12.
The classification of terms as closed-system-like, entan
ment, and memory terms retains its meaning even
multiple-time correlation functions~for entanglement terms
the requirement will be that the term starts and ends w
pure states, but in betweenat least oncethe state of the
environment is sampled!. In the attempt to generalize th
Kadanoff-Baym-Keldysh equations for open systems, we
lieve that it will be possible to treat the entanglement ter
through a type of correction to the self-energy part, wher
the memory terms will unfortunately remain as additi
terms in the equations of motion.
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A. Transport equations for the transient regime

The evaluation of the submatricesUi j , needed to calcu-
late the open system’sG, ~and G., in a similar fashion!,
becomes difficult with increasing size of the system and
vironment, and direct computation is generally out of t
question. However, within the time-convolutionless a
proach,U21 andU22 can always be written in terms ofU11
and U12, but formalization of these relationships requir
establishing a timet0 . This approach is therefore ideal fo
transients, and we present it along the lines of Ref.@23#;
namely, the equations of motion forr1 andr2 can be written
as2

dr1~ t !

dt
52 i @L11~ t !2L12~ t !K22

21~ t;t0!K21~ t;t0!#r1~ t !

2 iL 12~ t !K22
21~ t;t0!H22~ t,t0!r2~ t0!,

r2~ t !52K22
21~ t;t0!K21~ t;t0!r1~ t !

1K22
21~ t;t0!H22~ t,t0!r2~ t0!, ~25!

2This presentation of the equations of motion is somewhat dif
ent from the presentation in Ref.@23#, but they are easily shown to
be equivalent.

FIG. 2. The four terms inGS
, for an open system in the transien

regime, from Eq.~24!. ~a! The closed-system-like term;~b! the
entanglement term;~c! and ~d! the memory terms.
2-6
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where the operatorsH22, K21, andK22 satisfy

H22~ t,t0!5Tc expS 2 i E
t0

t

dt L22~t! D ,

dK21~ t;t0!

dt
52 iL 22~ t !K21~ t;t0!1 iK 21~ t;t0!L11~ t !

1 iK 22~ t;t0!L21~ t !,

dK22~ t;t0!

dt
52 iL 22~ t !K22~ t;t0!1 iK 22~ t;t0!L22~ t !

1 iK 21~ t;t0!L12~ t !,

K21~ t0 ;t0!50, K22~ t0 ;t0!51. ~26!

Note that the second time variable in the argument of
submatricesK12(t;t0) andK22(t;t0) is not exactly a variable
namely, t0 denotes the fixed initial time, which defines th
boundary conditions forK, and is separated from the firs
time variablet by a semicolon instead of a comma to indica
that it is not a variable, but a fixed parameter.

Now, according to Eq.~25!, when the second time vari
able in the evolution matrices is fixed tot0 , the equations of
motion for the evolution submatrices are given by

dU11~ t,t0!

dt
52 i @L11~ t !2L12~ t !K22

21~ t;t0!K21~ t;t0!#

3U11~ t,t0!,

dU12~ t,t0!

dt
52 i @L11~ t !2L12~ t !K22

21~ t;t0!K21~ t;t0!#

3U12~ t,t0!2 iL 12~ t !K22
21~ t;t0!H22~ t,t0!,

U21~ t,t0!52K22
21~ t;t0!K21~ t;t0!U11~ t,t0!,

U22~ t,t0!5K22
21~ t;t0!@H22~ t,t0!2K21~ t;t0!U12~ t,t0!#.

~27!

After solving Eqs.~26! and ~27!, and taking into accoun
U(t8,t)5U(t8,t0)U1(t,t0), we can obtain the submatrice
needed in the two-time correlation functions and the relev
single-particle quantities. Although Eqs.~25!–~27! are un-
doubtedly complicated, their main advantage is their
hanced transparency. Since there is no explicit environme
partial trace that obscures the structure of relevant terms
expansion in terms ofL12 can be performed. We will now
analyze some specific examples.

B. The example of a ‘‘randomized environment’’

An interesting example is the example of a ‘‘randomiz
environment,’’ i.e., the case in which the state of t
system1environment at t0 is given by r rand(t0)5 r̄E
^ rS(t0). We have dubbed this state the case of the ‘‘ra
domized environment’’ because the initial density matrix
the environment is the uniform density matrixr̄E , and it is
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known that the entropy corresponding to such a density
trix is maximal. One may wonder if such an example has a
relation to the real world, and the answer is ‘‘yes.’’ Let u
assume that the initial state ofS1E is of the tensor-produc
type ~indicating thatS and E were, at least approximately
uncoupled in the past!, and that the initial environment den
sity matrix rE(t0) commutes with the environment Hami
tonianhE ~which is the case, e.g., in thermal equilibrium!. If
the system-environment coupling becomes appreciable,
such that the environment states, which come into p
through the matrix elements of the interaction Hamiltoni
hint , are virtually equally distributed withinrE(t0), we can
reduce the dimension of the environment Hilbert space
is relevant, and within this reduced space the effective ini
environment density matrix is uniform, so the ‘‘randomize
environment’’ approximation actually is quite plausible.
typical example is found at very high temperatures, when
all the relevant environment energy levels«n,E , «n,E /kBT
→0.

SincerE(t0)5 r̄E , r2(t0)50. From Eq.~25!, we see that
the equation forrS becomes

drS~ t !

dt
52 i @L11~ t !2L12~ t !K22

21~ t;t0!K21~ t;t0!#rS~ t !,

~28!

the form of which indicates that the system evolves as
decoupled from the environment. However, the influence
the environment is contained in the entanglement opera
K21 andK22—there may not be obvious memory effects~i.e.,
explicit information on the evolution of the environment a
the way from the initial state!, but entanglement occurs. In
formation on the current state of the environment is pres
as the second term on the right-hand side of E
~28! is clearly related to the term r2(t)5
2K22

21(t;t0)K21(t;t0)r1(t) @from Eq. ~25!#. This feature is
also seen when analyzingGS,rand

, . That is, among the four
terms from Eq.~24!, the two memory terms have vanishe
but the closed-system-like term and the entanglement t
survive, namely,

6 iGS,rand
, ~1,18!5TrS@CS

†U11~ t8,t !CSU11~ t,t0!rS~ t0!#

1TrS@CS
†U12~ t8,t !C2U21~ t,t0!rS~ t0!#.

~29!

So the statement that the system evolves as uncoupled
the environment is not exactly true: the memory terms m
be absent, but entanglement is present.

The case of the randomized environment is only o
among the class of situations where the initial state can
factorized asr(t0)5rE(t0) ^ rS(t0). As shown in Ref.@23#,
for any such case, the reduced density matrix at a given t
t can be related to the initial reduced density matrix acco
ing to an equation of the form

rS~ t !5E~ t,t0!rS~ t0!, ~30!

whereE is not unitary, but we will not go into details of its
structure. One might say that the systemS is, in this case,
2-7
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evolving as decoupled from the environment, and, accord
to Lindblad@30#, no other type of initial density matrixr(t0)
will allow for such evolution. What we want to stress here
that, since the initial state of the environment is contain
within E @23#, the memory terms will be important in trans
port, as the two-time correlation functions will contain the
In the case of a randomized environment, however, one
say that no memory terms are present for the simple rea
of the environment having initiallyno information to trans-
mit ~its initial density matrix was uniform!. All the ordering
in the environment~i.e., deviations in the environment’s den
sity matrix from the uniform one! can be attributed to the
system’s influence.

We may conclude that the effects of the syste
environment coupling are specified by the dynamics~i.e., the
coupling strength! and cannot becompletelyeliminated by a
fortunate choice of an initial state, contrary to stateme
made in some work. Here, we have given only the m
general considerations regarding the importance of mem
effects in the transient regime. What needs to be done
future work is to obtain a perturbation expansion, in terms
the coupling strengthL12, of the memory terms and espe
cially the entanglement term inGS

, and GS
. , which may

result in significant corrections to the fine details of pr
cesses such as relaxation of electrons due to scattering
nonequilibrium phonons in semiconductors.

IV. TRANSPORT IN A FAR-FROM-EQUILIBRIUM
STEADY STATE

Reaching a well-controlled steady state, independen
initial conditions, is the goal of applying external drivin
forces in various systems, such as semiconductor dev
Typically, after the characteristic relaxation timet relax, a far-
from-equilibrium steady state is achieved, for which

rS'const ~ t@t relax!. ~31!

The relaxation time is sufficiently long to destroy the info
mation about the initial correlations and build up new on
in agreement with the external driving forces@11#. When the
transients have died out, we assert that, since the relaxa
forces have adjusted to the driving forces,no more informa-
tion from the environment is being passed on to the sys,
i.e.,

iL12~ t !r2~ t !i!iL11~ t !r1i ~ t@t relax!. ~32!

The system effectively starts to be decoupled from the e
ronment, andrS evolves underL11 alone. Together, the de
coupling criterion Eq.~32! and the steady-state criterion E
~31! imply

drS

dt
'2 iL 11~ t !rS'0. ~33!

SinceL11 is commutator-generated, corresponding to the
fective HamiltonianhS,eff , Eq. ~16!, we obtain

@hS,eff~ t !,rS#5@hS~ t !1~1/dE!TrEhint~ t !,rS#'0. ~34!
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This equation is a mathematical way of saying that a bala
between the driving forces (hS) and the relaxation forces
@dE

21TrEhint(t)# has been achieved. It is important to no
that the steady-state influence of the environment is s
solely through the self-consistent relaxation term
dE

21TrEhint(t) and no longer through terms that explicit
involve the state of the environment.

As a consequence of the decoupling requirement~32!, the
far-from-equilibrium steady-stateGS

, takes on the typical
form for closed systems, with the effective total syste
HamiltonianhS,eff , namely,

6 iGS
,~1,18!5TrS@CS

†U11~ t8,t !CSrS#

5TrS@cS
†u~ t8,t !cSrSu~ t,t8!#, ~35!

where

u~ t8,t !5Q~ t82t !Tc expS 2 i E
t

t8
dt hS,eff~t! D

1Q~ t2t8!Ta expS i E
t8

t

dt hS,eff~t! D . ~36!

The situation seems exceptionally promising, as all the e
ments of the NEGF formalism could be applied as they a
Unfortunately, there are several major drawbacks. First,
do not really know what the far-from-equilibrium stead
staterS actually is, and, in real systems, one obtains a sin
far-from-equilibrium state from multiple initial conditions
Furthermore, we are, in general, unable to solve Eq.~34!,
and, even if we were, the solution may not be unique, a
should further be specified by a relevant set of state par
eters ~such as occupation numbers, average energy, e!.
This could be accomplished by constructing an approxim
relevant statistical operator@31#, which satisfies the self-
consistency requirements for the given set of state par
eters. However, diagrammatic expansion in terms of
system-environment interaction term TrE(hint)/dE may not
be possible, as the relevant statistical operator does no
general, admit Wick’s decomposition. However, the Dys
equation can be recovered for the so-calledmixed Green’s
functions@32#.

It is noteworthy that the results of this section actua
address an issue well known in semiclassical transp
theory. That is, when solving, e.g., the energy-balance eq
tion ~a version of the Boltzmann equation@33#! with large
energy exchanging terms@which would correspond to the
term dE

21TrEhint(t) in Eq. ~34!#, it becomes difficult to inte-
grate over the energy axis, due to noncausality introduced
these terms. An alternative solution starts from an equi
rium distribution that is among the many initial states th
would yield a given steady state. In this way, a particu
trajectory in the system’s evolution is fixed, which makes t
integration straightforward and convergent@34#.
2-8
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V. CONCLUSION

Presently, considerable effort is being focused on deep
ing our understanding of transport in mesoscopic structu
especially on short time scales. In this paper, we have arg
that proper treatment of relaxation mechanisms in these
tems requires treating the system as open, and we have t
fore introduced a basis for generalization of the nonequi
rium Green’s functions formalism for analysis of ope
systems. Using the so-called partial-trace-free approach
have defined the two-time correlation functions and the tim
ordered single-particle Green’s functions for an open syst
In the transient regime, in addition to the term expected
closed systems, there are additional terms in the two-t
correlation functions, which correspond to the entanglem
and to the memory effects. The entanglement term is imp
sible to lose by manipulation of the initial state of the en
ronment. We have also derived the equations of motion
the two-time correlation functions in the transient regime

On the other hand, we have shown that, in a far-fro
equilibrium steady state, due to the balance of the driv
and relaxation forces, the system and the environment
come virtually independent, as far as information excha
between them is concerned, and the system continue
evolve as if uncoupled from the environment and govern
by an effective, modified Hamiltonian. The two-time corr
lation functions recover their closed-system forms, but
system far-from-equilibrium density matrix remains an u
known. It might be addressed by the relevant statistical
erator approach, if a set of measured variables is given.
work rigorously proves that the difference between the tr
sient and the far-from-equilibrium steady-state regimes
that, during transients, the combined memory and entan
ment terms are appreciable with respect to the clos
system-like term, while they are virtually nonexistent in
far-from-equilibrium steady state. Further development
the nonequilibrium Green’s function formalism for open sy
tems is in progress.
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APPENDIX A

In this appendix, we show how a basis$uab&% in
(HS1E

2 ) P̄51 is constructed, and prove Eq.~7! ~details can be
found in @23#!. Let us choose the basis$uab&ua,b
51,...,dS% in HS

2 and the basis$u i j &u i , j 51,...,dE% in HE
2,

which give rise to the tensor-product basis$u ia, j b&u i , j
51,...,dE ;a,b51,...,dS% in HS1E

2 . Then, one finds that the
vectors defined as

uab&[
1

AdE
(
i 51

dE

u ia,ib& ~A1!
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constitute an orthonormal basis within the unit eigenspac
P̄, namely,

P̄uab&5uab&, ^abusg&5dasdbg ~; a,b,s,g!.
~A2!

P̄ can therefore be written as

P̄5 (
a,b51

dS

uab&^abu, ~A3!

and it follows that, for anyxPHS1E
2 ,

P̄x5 (
a,b51

dS

~ P̄x!abuab&, ~A4!

where

~ P̄x!ab5^abux&5
1

AdE
(
i 51

dE

^ ia,ibux&5
1

AdE
(
i 51

dE

xia,ib.

~A5!

Using the fact that TrEx, being a vector inHS
2, is written in

terms of the basis$uab&% as

TrEx5 (
a,b51

dS

~TrEx!abuab&5 (
a,b51

dS S (
i 51

dE

xia,ibD uab&,

~A6!

from Eq. ~A5!, we obtain Eq.~7!:

~TrEx!ab5AdE~ P̄x!ab. ~A7!

APPENDIX B

In this appendix, we show that any superoperator of
form Asys5I E^ AS commutes withP̄, and prove Eq.~11!,
i.e., we demonstrate that the upper left block matrix ofAsys

in the eigenbasis ofP̄ is exactlyAS . First, note thatP̄ and
Asys commute:

P̄Asysx5 r̄E^ TrE@~ I E^ AS!x#5 r̄E^ ASTrEx

5~ I E^ AS!~ r̄E^ TrEx!5AsysP̄x. ~B1!

This result is obviously independent of the choice of t
projector, i.e., any environment density matrix can be cho
instead ofr̄E to induce the projector. The upper left block
matrix elements ofAsys are given by

~B2!
2-9
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APPENDIX C

We will prove thatL11 for the Hamiltonian of the form

h51E^ hS1hE^ 1S1hint ~C1!

is of the commutator-generated form, corresponding to
effective Hamiltonian given by Eq.~16!. That is, the Hamil-
tonian matrix elements in the basis specified in Appendi
are

hj b
ia5~hE! j

i db
a1d j

i ~hS!b
a1~hint! j b

ia , ~C2!

yielding the matrix elements of the Liouville operator as

Lps,qg
ia, j b 5hps

ia dq
j dg

b2hj b
qgdp

i ds
a . ~C3!

In particular,

~Lsys!ps,qg
ia, j b 5dp

i dq
j @~hS!s

adg
b2ds

a~hS!b
g#5dp

i dq
j ~LS!sg

ab ,

~Lenv!ps,qg
ia, j b 5ds

adg
b@~hE!p

i dq
j 2dp

i ~hE! j
q#5ds

adg
b~LE!pq

i j .

~C4!

According to Eq.~B2!, we obtain
i-

,

i-

s

o
e

06612
n

Lsg
ab

5^abuLusg&5
1

dE
@~TrEh!s

adg
b2ds

a~TrEh!b
g#,

~C5!

so we see that

~Lsys!sg
ab

5~LS!sg
ab5@~hS!s

adg
b2ds

a~hS!b
g#,

~Lenv!sg
ab

50, ~C6!

~L int!sg
ab

5S 1

dE
D @~TrEhint!s

adg
b2ds

a~TrEhint!b
g#.

We have already seen from Eq.~C5! that L11 is of the
commutator-generated form, and we could say that the ef
tive Hamiltonian was (1/dE)TrEh. However, even though
TrEhenv5(TrEhE)I SÞ0, still Lenv,1150, so apparently the in-
fluence of the environment is not present inL11. Therefore,
we realize that the effective system Hamiltonian, correspo
ing to L11, should be chosen as

hS,eff5hS1
1

dE
TrEhint . ~C7!
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