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Memory effects and nonequilibrium transport in open many-particle quantum systems
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Full understanding of the relaxation mechanisms and far-from-equilibrium transport in modern mesoscopic
structures requires that such systems be treated as open. We therefore generalize some of the core elements of
the Kadanoff-Baym-Keldysh nonequilibrium Green’s function formalism, inherently formulated for closed
systems, to treatment of an open system, coupled with its environment. We define the two-time correlation
functions and analyze the influence of the memory effects on the open-system transport. In the transient
regime, the two-time correlation functions clearly show four distinct terms: a closed-system-like term, an
entanglement term, and two memory terms that depend explicitly on the initial state of the environment. We
show that it is not possible to completely eliminate the influence of the environment by a fortunate choice of
the initial state, and approximating the system as closed is valid only in the limit of negligible system-
environment coupling, which is never the case in the transient regime. We derive the transport equations for
transients that properly account for the system-environment coupling. On the other hand, we address the
important issue of transport in a far-from-equilibrium steady state. We show that, once a steady state is reached,
the balance between the driving and relaxation forces implies that the two-time correlation functions regain a
closed-system-like form, but with an effective, modified system Hamiltonian, and withystem statistical
operator unrelated to that of the initial stat®Ve emphasize that the difference between the transient and the
far-from-equilibrium steady-state regimes, crucial for theoretical investigation of nonequilibrium quasiparticle
transport, effectively lies within the different relative magnitude of the combined entanglement and memory
terms with respect to the closed-system-like term in two-time correlation functions.
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[. INTRODUCTION the evolution of nonequilibrium interacting many-particle
systems. Variants of this technique have been used in virtu-
The past few decades have brought much activity in thally all disciplines of theoretical physi¢4,2,16,17. The ap-

fields of mesoscopic and nanoscale phygits3]. Today, peal of the NEGF formalism lies in the perturbation expan-
conventional silicon-based semiconductor devices arsion, which enables one to elegantly obtain results by partial
smaller than ever, typical dimensions being only a few to asummation of the diagrams that are dominant within a cer-
few tens of nanometerigl], and low-dimensional semicon- tain approximation, provided that the initial state admits
ductor structures offer a variety of exciting features, bothWick’s decomposition (this important question was ad-
fundamentally interestinge.g., conductance quantization in dressed in detail by Danielewi¢28]). However, the NEGF
quantum point contac{$,6], Coulomb blockade, and single- formalism is, above all, formulated for closed systems. The
electron tunneling in quantum dofg,8], etc), and techno- state of the environment, if important, is assumed known and
logically applicable (e.g., high-mobility two-dimensional unaffected by the feedback from the system. The environ-
electron gas in semiconductor heterostructy@ds On the ment influences the system through a correction to the
other hand, ultrashort laser pulse excitations are finally proHamiltonian, but no degrees of freedom besides the system’s
viding us with experimental insight into the femtosecond re-are present. Thus, the essence of the NEGF formalism is that
laxation properties of material§10]. Consequently, our the many-body system of interest obeys Hamiltonian dynam-
present understanding of electronic transport is being chaies. The evolution is perfectly reversible, and one has the
lenged in multiple ways, and it has become evident that thevell-defined Heisenberg and interaction pictures, and, conse-
typical time and space scales of modern condensed mattguently, the definitions of the Green’s functions and the per-
physics have dramatically shrunk. Today, a plausible transturbation expansion. Finally, for the analysis of transport,
port theory ought to describe small, very inhomogeneougvaluation of the first few lowest-order Green’s functions is
structures, and be able to adequately address the fast relaxsually quite sufficient to obtain quantities such as the cur-
ation processes, as well as far-from-equilibrium steady statagnt density, etc.

[2,11-13. Here we see a principal constraint for the use of the
The Kadanoff-Baym-Keldysh nonequilibrium Green’s NEGF formalism in the treatment of far-from-equilibrium
function (NEGF) formalism[14,15 is known to be a very transport in mesoscopic structures. A far-from-equilibrium
general and powerful technique for theoretical treatment oteady state of the system of interest is achieved through a

balance between the driving and relaxation forces, and can-

not be uniquely related to the initial system micros{dt@).
*Email address: irenak@asu.edu This irreversibility in the behavior is due to the fact that the
"Email address: ferry@asu.edu system of interestthe current-carrying electropss not a
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closed system, but rather an open subsystem of a larger, iequilibrium steady state. We point out that one can
y p y ger, ieq teady point out .
teracting closed systefgontaining phonons, edcThe envi-  rigorously arrive at the fundamental, intuitively plausible
ronment is indeed affected by the system, especially in thgualities of the far-from-equilibrium steady state, which are
transient regimée.g., nonequilibrium phonor€0]), and the  the facts that a balance between the relaxation and the driv-
memory effects become important_the dynamics of an opeiﬂg forces is obtained and that the statistical operator in such
system is non-Hamiltonian. Full treatment of open system# State cannot be uniquely related to the initial state. Due to
traditionally relies on the calculation of the system reducedh€ gain-loss balance, we assert that the two-time correlation
density matrix, but such an approach is feasible only in fairlyfunctions for a far-from-equilibrium steady state are akin to
small systems, such as molecul@4]. In many-body sys- those of a closed system, but with an effective, modified
tems, the reduced density matrix is not only impossible tg?amiltonian, and with a density matrix that is unrelated to
calculate, but is actually unnecessary to analyze transport, agiat of the initial state. We conclude that, as far as quasipar-
from experience with closed systems, we know that the firsHC€ transport in open systems is concerned, the transient and
few lowest-order Green's functions should suffice. HoweverStéady state regimes can be distinguished by the relative
the non-Hamiltonian dynamics makes it impossible toMmagnitude of the combined entanglement and memory terms
straightforwardly define the open system’s counterparts ofVith respect to the closed-system-like term: memory and en-
the Heisenberg and interaction pictures: the memory term ifAnglement are very important during transients and virtually
the equation of motion is a crucial element that has no counONexistent in a steady state. _
terpart in closed systems, and thus requires a complete reas- N Se€c. IIA, we introduce the elements of the partial-
sessment of many notions lying at the very core of the NEGErace-free approach, which allow us to define the open-
formalism as we know it. system two-time correlation functions in Sec. IIB. In Sec.
In this paper, motivated by the need to deepen the undef!: fransport in the transient regime is addressed, and the
standing of transport in mesoscopic structures, we generaliZfuations of motion for the two-time correlation functions
some of the core elements of the nonequilibrium Green'§re derived. In Sec. 1V, a far-from-equilibrium steady state
function formalism to treatment of transport in open quan-IS analyzed. We conclude with a summary and outiook in

tum systems; namely, we first generalize the two-time correS€¢: V-
lation functions to open systems, in such a way that their
physical meaning is retained, and their form tends to that of
the closed system when the system-environment coupling is
turned off. Haakd22] addressed the evaluation of an open
system’s correlation functions, but his approach requires in- Our principal goal in this section is to generalize the
formation about the entire evolution of the environment,closed system’s two-time correlation functions of the type
which is precisely what we wish to avoid here. Thus, ourTr[ pyay(t’)by(t)], wherep is the (closed system density
generalization of the two-time correlation functions is basedmatrix, anda andb are two system operators, all given in the
on the use of the so-called partial-trace-free apprd2&h Heisenberg picture, as indicated by the subsdtigho sub-
which enables one to avoid calculation of the full systemscript indicates the Schdinger picturg. A definition of the
+environment quantities when one is interested only in thecorrelation functions has been attempted previously by
system. Definition of the two-time correlation functions is atHaake[22], but, in his work, one was required to use the full
the very core of theoretical analyses of quasiparticle transevolution of the open systefrenvironment, which is pre-
port (we show how other single-particle Green’s functionscisely what we wish to avoid as best we can. A generaliza-
are easily defined In this way, we are able to calculate the tion of the two-time correlation functions will eventually en-
functions with as little information about the environment asable us to define the core transport variables: the “greater
necessary. At this point, we are equipped to analyze the imthan” and “less than” single-particle Green's functions,
pact of the system-environment coupling on the transport ofjiven for closed systems by

the open system, and we focus our attention on two ex-

tremely distinct regimes: the transient regime and the far-

II. TWO-TIME CORRELATION FUNCTIONS
FOR OPEN SYSTEMS

Hats (A= + g0
from-equilibrium regime. In the transient regime, we clearly IGT(1L 1) =Trlpuyn(O ¥ ()],
demonstrate that there are four different terms appearing in
the two-time-correlation functions. In addition to the closed- +iG<(L,1) =T putis (1) gu(D)], 1)

system-like term, there are two memory terms, containing

the information on the initial state of the environment. In

addition, there is an entanglement term, which we show canwhere the upper sign refers to bosons and the lower sign to
not be lost through any manipulation of the initial state of thefermions. The field operators, at this point, can be the cre-
environment. This term relates the initial state of the systenation or annihilation operators at a point in space or in a
to the present state of the system, sampling the state of ttengle-particle state. The following approach can easily be
environment at one point in the meantime. This analysis igeneralized to higher-order Green’s functions.
complemented by the equations of motion for the two-time For a closed system with Hamiltonid&dt), which may be
correlation functions for transients, and by some specific iltime dependent due to external driving forces, the density
lustrative examples. On the other hand, we analyze the bematrix p in the Schrdinger picture obeys the quantum Liou-
havior of the two-time correlation functions in a far-from- ville equation[24-26

066122-2



MEMORY EFFECTS AND NONEQUILIBRIUM TRANSPOR. .. PHYSICAL REVIEW E 67, 066122 (2003

dp(t Px=0- O=1-P. 2
Z(t)=—i[h(t),p(t)]E—iL(t)p(t), @ Px=pe®Trgx, Q=1—-P, XxeH&, g (5b)
The projector operators, in general, were introduced by Na-
wherel is the Liouville superoperataisuperoperators will kajima[24], Zwanzig[25], and Mori[26], for obtaining the
be denoted by capital lettgrswith T° (T%) denoting the equation of motion folps. In the conventional projection-
chronologicalantichronologicaltime ordering, and® being  operator approach, the equation of motion Ry is solved,
the Heaviside step function, where P is a projector generated by an arbitrarily chosen
_ density matrixpg of the environment, using a relation of
p(H=U(1.0p(0), type (5b), i.e., throughPx=pg®Trex, xe H2, . Then the
t partial trace over the solution is taken to obtain the system
U(tt)=0(t—t")T® exr( —i J,er(r)) density matrix, as B(Pp)=Trg(p)=ps. However, we
! have recently showf23] that the above choice d?, Eq.
t (5b), is such that the partial trace with respect to the envi-
+O(t'-)T® eXD(ift dr L(T))- (3)  ronment becomes unnecessdtlye so-calledpartial-trace-

free approachy namely,Eis a projector, thus having eigen-

If a andb are time-independent operators in the Sdimger ~ values 1 and 0, with corresponding eigenspaces being of
picture, it is easily shown that the two-time correlation func-dimensionsdé and d%(dé— 1), respectively. Th&s+E Hil-

tions can be written as bert space can be represented as a direct sum of these two
, , mutually orthogonal eigenspaces Pf i.e.,
T pran(t))by(D]=TraU(t’ Dibp(D]).  (4) y orthoganal eigenspaces Ry
- 2 _ 2 — 2 —
That is, when written in the Schadinger picture, the desired Hs+e=(Hsig)p=19 (Hsig)p=0- (6)

expectation value actually means that, at timb acts onp ] ) o, .
(actually,b acts on the “ket” part ofp): thenbp(t) evolves FOr any given basi§|ag)|e,f=1,...ds} in Hg (the Liou-
under the quantum Liouville equatidie., is the argument Ville space of the system, i.e., the space of operators acting
of U(t’,t)], until a acts on the result at time. We will see  on the system’s Hilbert spacks), there is a simply con-
that the form on the right-hand side of Bd) is actually the ~ structed basi§|aB)|a,=1,...ds} in (H5,¢)p-1 (see Ap-
form that allows for a generalization to open systems, whilependix A such that, for any<eH§+E,

keeping the proper physical meaning. So we first need to

investigate how exactly the density matrix of an open system (Trex) *#= \Jde(Px) 2. 7
evolves.
This basis in the unit eigenspace is complemented by an
A. Open-system reduced density matrix and the orthonormal basis in the zero eigenspace. According to the
partial-trace-free approach decomposition(6), a vectorx e H3, ¢ can be represented in

Consider an open syste) interacting with its environ- the complete eigenbasis 8 by a column
mentE, so that the systemenvironment §+E) is closed,

and possibly influenced by external driving fields that are X1

assumed known and unaffected by the feedback f&m =x, | (8a)
+E. The Hilbert spaces of the environment and the system,

HE and HS, are assumed to be of finite dimensicn‘§and and the projectors are represented by

ds, respectively, yielding for th&+E Hilbert spaceHs, g

=Heg® Hs. The evolution of the totab+ E density matrixp _ 12 00 _fo o

is given by the quantum Liouville equatiof2), with the P= o ol Q= o 1l (8b)

Hamiltonianh consisting of the system palit, .= 1e®hg,
the environment pattg,~=hg®1g, and the interaction part

Nint, S0 thath=hgyc+ han . Obviously, the correspond- On the other hand, taking the partial trace with resped to

ing Liouville operator is of the form. =L gt Loyt L. of anyS+ E observapleg gives what the system experiences
) . SYSs o of this observable. It is important to stress that, from now on,
Now, the evolution of the open syste®is described by the . o .
we will make no distinction between a system variakle

reduced density matrips=Trg(p), with Tre(--) denoting =Trex and its representation column in the bagisg)} of
the partial trace over the environment states. To deduce how , . .
. Therefore, forxg being the representation column of

ps evolves, we use the projection-operator technique baseds ) : .
on the uniform environment density matfig3] xs=Trex in the basis|ap)} of Hg’ according to Eq(7) we

obtain
— _ -1
pe=de " 1g_xqp (5a)
- Xs= %1 \de. ©)
which introduces projection operatoPs and Q on H3, ¢ _
=(Hg®Hs)? (the Liouville space o8+E, i.e., the space of In the eigenbasis dP, a superoperatoh that acts ori"—l%+E
all operators or{s, g) by the relations is, in general, represented by a block-matrix form
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which accounts for the well-known first-order correction to
. (10)  the system energy spectryril,27], due to the coupling with
the environmentsee Appendix € Secondly, it is clear that
sthe upper-left block matrix of ang+ E superoperator can be
dubbed the “purely system part” of that operator. The terms

A A
Ao Az

If the operatorAg s is a system operator, i.e., an operator o
the formA,<=c®Ag, whereAg acts orH3, thenAgccom- ¢ .

.S;]’SE E dS' H fs s q bsys biock. M Ed: (13 that effectively account for the system-
mutes with P, and s therefore represented by a bIOCK-gpyironment coupling are the off-diagonal terrg, and

diagonal form in the eigenbasis d?. Furthermore, the |, =(L,,)". In order for the system to evolve as decoupled
block-diagonal form is such that the upper-left block matrixfrom the environment, we must have

is exactly the one representin in the basis{|a8)} (see

Appendix B, namely, 1L 120l <L 1304l (17
Ac= | e® A= As 0 (11) This requirement is obviously satisfied when the interaction
SYSTIETTST I 0 A, vanishes ;=0 impliesL,,=0), but we argue in Sec. IV

that, even in the case of appreciable coupling, when a bal-
Returning to the evolution of the systenenvironment, de- ance between the driving and the relaxation forces is
scribed by the Liouvuille equatiof®) and its solution(3),  achieved, this criterion is satisfied. This actually defines
in the eigenbasis ofP defined above, the system reaching a far-from-equilibrium steady state.
+environment total density matrix is given by

B. G™ and G= for open systems

. ps=p1Vde. (12) In the system Liouville spacé(2, multiplication of the
reduced system density matpx by the system creation and
The Liouville operator and the evolution operator are givengnnihilation operators{/g and ¢ can be described by super-
by the block forms operators¥ " and ¥ acting onpg as a vector inHZ. It is
L) Lyst) understooq thqt the Liogville space is constructed to allow
= 12 } for this action, i.e., that, in addition to the states correspond-
Lay(t)  LooAt)) ing to a given number of particlds.g., electrons which are
used to construgtg, at least the states with1 electron are
Up(t,t")  Ugy(tt’)
Ux(t,t")  Ugy(tit’)

P1
P2

p:

L(t)I[

included. This is a computational rather than a theoretical
requirement, and it suffices when one is interested only in
two-time correlation functions, meaning that at most one par-
whereL,;=(L1o)" (L is Hermitian, andU is unitary. When ticle is createdannihilated. Accommodation of higher-order

Egs. (2) and (3) are written out in their matrix representa- Green’s functions will require further augmentation of the

u(t,t')= , (13

tions, we obtain system Liouville space during computation.
q Now, within the total system environment, annihilation
Pr_ . ; of a system particle can be described by a superopevator
——=—iLy(t t)—iLk oot 1), . :
dt 1(Dpa(t) 120p2(1) of the formW¥=1-® V¥4, which, according to Eq(.ll),_has
d the following block-diagonal form in the eigenbasis Rf
P2 . .
i = iLahpO—ilapa(t), (149 Ve 0
o w } (18
and 2
p1()=Up(t,t)py (1) + Ut po(t’), \?}?wously, the creation operatarg will be associated with
p2(t)=Up(t,t")ps(t") +Uy(t,t")pa(t’). (15) We are now almost fully equipped to define the two-time

correlation functions for open systems. Following the discus-
There are several very important features of E8)—(15). sion of the introductory part of this section, a definition of
First, L,, is of the commutator-generated form, i.e., it corre-G~(1,1’) for the open system requires that, first, a system

sponds to an effective system Hamiltoniag. given by particle is created at tim& [i.e., W' acts onp(t)]; then
¥y evolves untilt, when a particle is annihilated. However,
Ns er=hst Tre(hin) /dg, (16)  we need only the system’s point of view of this actimt the

full systemt-environment’'s. So, we define two auxiliary
. o variablesp”"t'(t) and p™t'(t) such that
We will make no distinction between a system superoperator
onH3 and its representation matrix {fu/)}. The relations that we
obtain later are essentially basis independent, since, for any chosen p
basis{|aB)} in HZ, there is a unique basiaB)} in (H3, ()p-1 , , )
such that Eqs(7)—(11) hold. pl () =Tp(t"), pP()=U(,tHp" (t). (19

) =wp(t), p" M (H=U(t)p" Y (1),
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We then define the open system’s “greater than” and “less a)

than” Green’s functions as entangled
states

iGZ(L1)=Trd Wepl V' (1)1,

+iG5(1,1)=Trd Vipd(t")]. 20
[ s( ) d sPs (t")] (20) oure llfg l]”(t,t,) LIIS
These definitions have exactly the required physical mean- System ® > ¢
ing. The information provided by these functions is clear t t
after writing Egs.(20) as
IG5 (LY)=Trd WsUy(t.t") W gps(t')]
b)
’ T '
+ Ve Tre WUt t) Wp,(t)], entangled s :
states ' v
£iGS(LY)=Trd WU (t', ) Wsps(t)] ! :
+OeTrd WEU 1t ) Wopa(t)]. (2D) ! 5
There are two terms on the right-hand side of Eg4). But, systomn s
before proceeding with the analysis of K1), it is impor- states e t
tant to recall that there are two classes of staté¥3n: the
first ones belong to theH, £)r-1, and due to the isomor- FIG. 1. lllustration of the two terms in the definition &2,

phism given by Eq(7) we call them thepure system states from Eq.(21). (a) A particle is created a' among the pure system
States from H§+ £)p—o, the orthocomplement to states, and annihilated fatalso among the pure system states A
(Hé+ £)p—1, We dubbedentangled statess they contain the particle is _created among the entangled states, and due to this
information on the entanglement of the system and environgvent the information about the state of the environment becomes
ment states; namely, by entanglement one usually considef&P
any deviation of thes+ E density matrix from a tensor prod- are , - ) e ,
uct of the subsystems’ density matrices. Here, however, we Gs(1,1)=0(t'—1)Gg(1,1) + O (t—t")Gg(1,1).
are interested in whether or not the tofat E density matrix (23

arent at, when the particle is annihilated.

Writing down the equations of motion for these time-ordered
Green’s functions would be the next logical step. However,
since we do not wish to specify anything about the interac-

tion, and thus cannoa priori expect to obtain a Martin-

terms: one that describes propagation between pure.SySte&hwinger—type hierarchy, we will not proceed along these
states and pure sy§tem states, and one that desdtibes lines. Rather, we will focus our interest on the importance of
transfer of information between the entangled and pUrg o memory effects on transport

states In Fig. 1, we have depicted the contributions from the
two terms toG~. It is important to note that, if we were to
neglect the system-environment coupling, i.e., if the system

information-entropy standpoint.
We now see that each of the equatid@$) contains two

IIl. TRANSPORT IN THE TRANSIENT REGIME

were treated as closed, only the first telfig. 1(a)] would Transient regimes have, so far, received fairly little theo-
survive, so propagation between pure system states and pui&ical attention, compared to steady-state regimes. First, the
system states islosed-system-like transient regime is virtually irrelevant when the main pur-
An illustration of the SOlldlty of our deflnltlorﬁ21) is the pose is the description of the Steady_state regime, as the sys-
form of the average density at a given point; namely, tem tends to “forget” about the unimportant details of its
- + past. Second, the conceptual difficulties of formulating and
(ns(r,1)==iGg(rt,rt)=Trd Wg(r)¥s(r)ps(t)] solving transport equations within the transient regime have

been significant. Third, until the femtosecond laser excitation
enabled insight into the short-time behavior of systems, the
(220  fine details of transport on these time scales were experimen-
tally unverifiable.
since, from Eq.(3), U(t,t)=1, so Uyy(t,t)=1, Usy(t,t) Recently, transients have been receiving enhanced theo-
=0, and the result above is exactly what is expected. retical attention[16,28. For example, much work on the
Having properly define~ andG~, we can now define treatment of initial correlations in nonequilibrium Green’s
the chronological and antichronological Green’s functionsfunctions has been done recert89]. Ladder-type diagrams

=Tr Y& s ps(D]=Trd n(r)ps(t)],

G® andG? as have been obtained as a correction to the diagrammatic ex-
o R ) - pansions due to the initial correlations. However, we believe
Gg(1,1)=0(t-t")Gg(1,1)+0(t'-1)Gg(1,1), that the introduction of initial correlations, which are un-
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doubtedly very important, may be insufficient to describe the entangled a)
relaxation. Here, we will try to achieve an understanding of states : :
transient processes in general, within the present approach ' '
and without necessarily specifying the details of the Hamil- g ;
tonians. We will investigate how exactly the memory effects ure Utty) U N
influence the near-equilibrium transport; i.e., how the state of sf,’stem —e ‘) ’ ‘-‘Ié l#’ NS
the environment and the entanglement between the system states 1 d

and the environment states are observed in the open system’s

evolution. entangled g b)

During transient processes, the state f E can be
tracked back to the initial state at tinbg, which is assumed
to be given by a known density matrp(ty). There usually
exists a typical relaxation time.,,, during which the tran-

states

. . . pure
sient may be considered to occur, and after which a steady system
state is achieved. Considéis (1,1') in the transient regime, states
with the initial time set toty, andty<t,t’ <7qa. Using entangled 0
Egs.(21) and(15), we obtain states :
+iG5(1,1)=Trd WiU14(t )W sU14(t,to) ps(to)] !
pure qﬁ’,t) -'LP:
+Trg WU At )W ,Uou(t,to) ps(to) ] Yoo i
+AeTrd WIU15(t", )W U1 t,t0) pa(to) ]
entangled
+ e Trd WEU (17, 1) WU po(t, 1) pa(to) 1. states — 9 Ll]; )
' Lt
(24 | °
pure :
Of course,Gg measures the probability of ending up in the ss{:'tee'sn .

same system state, after having annihilated a particle at time
t at a given positiom, and then having created it at(later)

FIG. 2. The four terms i3 for an open system in the transient

timet’ atr’. Apparently, there are four terms that contribute regime, from Eq.(24). () The closed-system-like ternip) the
to this correlation function, and they are depicted in Fig. 2.entanglement tern(c) and(d) the memory terms.

The first term is theclosed-system-like terfifrig. 2(a)], the
only one that survives if the coupling betwe&mand E is
turned off (i.e., if L;,—0); the name given to it has to do

A. Transport equations for the transient regime

The evaluation of the submatricék; , needed to calcu-

with the fact that this term describes only the influence thafate the open system&= (andG~, in a similar fashion

pure system states have on pure systems states, whereas
information on the state of the environment is never incor
porated The last two termgFigs. 4c) and 2d)] are the
so-calledmemory termsas they start with the entangle
states, so they contain the information on thiéial state of
the environmentThese terms are both of first order in the
coupling L;,. The second ternjFig. 2(b)] is dubbed the

states, but in between the information on the state of the
environment is sampled. This term is of second order;in

omes difficult with increasing size of the system and en-
vironment, and direct computation is generally out of the
guestion. However, within the time-convolutionless ap-
d proach,U,; andU,, can always be written in terms &f;;
and U,,, but formalization of these relationships requires
establishing a time,. This approach is therefore ideal for
transients, and we present it along the lines of R28];

i . namely, the equations of motion fpg andp, can be written
entanglement terpras it does start and end with pure system,2 y d Pl i«

dps(t)

— —1/4. .
The classification of terms as closed-system-like, entangle- —g; —  [L12(0) ~L1A)Kgz (11o)Kan(tito) Jpa (1)

ment, and memory terms retains its meaning even in
multiple-time correlation functiongfor entanglement terms,
the requirement will be that the term starts and ends with
pure states, but in betweeat least oncethe state of the
environment is sampledIn the attempt to generalize the
Kadanoff-Baym-Keldysh equations for open systems, we be-

—iL 15(t) K55 (1 to) H ool £, o) pa(to),
pa(t)=— K5 (t;to)Kay(tito) pa(t)
+K55 (1t Haot,to) pa(to), (25

lieve that it will be possible to treat the entanglement terms———

through a type of correction to the self-energy part, whereas2this presentation of the equations of motion is somewhat differ-
the memory terms will unfortunately remain as additive ent from the presentation in R¢R3], but they are easily shown to
terms in the equations of motion. be equivalent.
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where the operatord,,, K,;, andK,, satisfy known that the entropy corresponding to such a density ma-
t trix is maximal. One may wonder if such an example has any
c . relation to the real world, and the answer is “yes.” Let us
HaAtto) =T exp( - ftodTLZZ( T)) ’ assume that the initial state 8f E is of the tensor-product
type (indicating thatS and E were, at least approximately,
dKy(t;to) _ _ uncoupled in the pastand that the initial environment den-
—at - LaADKa(tite) +iKa(tito)Lay(t) sity matrix pg(t,) commutes with the environment Hamil-
tonianhg (which is the case, e.g., in thermal equilibriurtf
+iKoo(t;tg)Log(t), the system-environment coupling becomes appreciable, but
such that the environment states, which come into play
dKoo(t;tg) ) ) through the matrix elements of the interaction Hamiltonian
gt~ LUKz tito) +iK i tito) Loalt) hie, are virtually equally distributed withipg(to), we can
reduce the dimension of the environment Hilbert space that
+iKo(t;tg)Lyo(1), is relevant, and within this reduced space the effective initial
environment density matrix is uniform, so the “randomized
Koi(to;tg) =0, Koo(tg;tg)=1. (26) environment” approximation actually is quite plausible. A
_ _ _ typical example is found at very high temperatures, when for
Note tha}t the second time varlal?le in the argument of they| the relevant environment energy levelse, e, e/KgT
submatrices 15(t;tg) andKoo(t;tp) is not exactly a variable; _, .
namely,ty denotes the fixed initial time, which defines the  Sincepg(to) =pg, pa(to)=0. From Eq.(25), we see that
boundary conditions foK, and is separated from the first the equation fopg becomes
time variablet by a semicolon instead of a comma to indicate

that it is not a variable, but a fixed parameter. dpg(t) ) L _
Now, according to Eq(25), when the second time vari- dt ~i[L1a() ~ La 1)Kz (o) Kaa(tito) Jps(l),
able in the evolution matrices is fixed tg, the equations of (28)

motion for the evolution submatrices are given by
the form of which indicates that the system evolves as if

dUq(t,to) B decoupled from the environment. However, the influence of

TR —i[Laa() ~ LiA K5 (1) Kau(tit0)] the environment is contained in the entanglement operators
K, andK,—there may not be obvious memory effets.,
XUyt to), explicit information on the evolution of the environment all
the way from the initial staje but entanglement occurs. In-
dUgpftty) . 1. _ formation on the current state of the environment is present,
dt = ~1[L1a() — L1 Kz () Kan(tito) ] as the second term on the right-hand side of Eg.
(28) is clearly related to the term p,(t)=
XUt tg) =il 1)K 35 (t5t0) H ool t), — Ko7 (t;t)Kay(t;to) pa(t) [from Eq. (25)]. This feature is
. also seen when analyzif@g . That is, among the four
Uai(t,tg) = — Koy (t5t0) Kaa(t; o) Ua(t,to), terms from Eq.(24), the two memory terms have vanished,
but the closed-system-like term and the entanglement term
Uoalt,t) = Koo (1t [ Haalt, tg) — Kay(titg) U 12(“0)](-27) survive, namely,
, o iiegranc(:lﬂl,):Trs[q};ull(t’st)qfsull(tatO)PS(to)]
After solving Egs.(26) and (27), and taking into account
U(t’,t)=U(t",to)U " (t,to), we can obtain the submatrices +Trd WEU 1t ) WU (1, to) ps(to) 1.
needed in the two-time correlation functions and the relevant (29)

single-particle quantities. Although Eq&5)—(27) are un-

doubtedly complicated, their main advantage is their enSo the statement that the system evolves as uncoupled from
hanced transparency. Since there is no explicit environmentahe environment is not exactly true: the memory terms may
partial trace that obscures the structure of relevant terms, gse absent, but entanglement is present.

expansion in terms of ;, can be performed. We will now The case of the randomized environment is only one

analyze some specific examples. among the class of situations where the initial state can be
factorized a(tp) = pe(to) ® ps(to). As shown in Ref[23],
B. The example of a “randomized environment” for any such case, the reduced density matrix at a given time

t can be related to the initial reduced density matrix accord-

An interesting example is the example of a randomlzeding to an equation of the form

environment,” i.e., the case in which the state of the
systemtenvironment atty, is given by pandto) =pe ps(t)=E(t,to) ps(to), (30)
®pg(ty). We have dubbed this state the case of the “ran-

domized environment” because the initial density matrix ofwhere& is not unitary, but we will not go into details of its
the environment is the uniform density matpx, and it is  structure. One might say that the systé&ns, in this case,
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evolving as decoupled from the environment, and, according his equation is a mathematical way of saying that a balance
to Lindblad[30], no other type of initial density matrip(ty) between the driving forceshg) and the relaxation forces
will allow for such evolution. What we want to stress here is[dz Trghi(t)] has been achieved. It is important to note
that, since the initial state of the environment is containedhat the steady-state influence of the environment is seen
within £ [23], the memory terms will be important in trans- solely through the self-consistent relaxation term
port, as the two-time correlation functions will contain them.d_*Trch,(t) and no longer through terms that explicitly
In the case of a randomized environment, however, one mapyolve the state of the environment.

say that no memory terms are present for the simple reason As a consequence of the decoupling requireni@ay, the

of the environment having initiallyo information to trans- far-from-equilibrium steady-stat&g takes on the typical

in the environmenti.e., deviations in the environment's den- familtonianhg .4, namely,

sity matrix from the uniform onecan be attributed to the
system’s influence.

We may conclude that the effects of the system- +iG5(1,1)=Trd ViU (t' ) Weps]
environment coupling are specified by the dynanfies, the
coupling strengthand cannot beompletelyeliminated by a =Trd %u(t’,t)wspsu(t,t’)], (35

fortunate choice of an initial state, contrary to statements
made in some work. Here, we have given only the most
general considerations regarding the importance of memoryhere
effects in the transient regime. What needs to be done in
future work is to obtain a perturbation expansion, in terms of

the coupling strength.,,, of the memory terms and espe-

cially the entanglement term iS5 and G5, which may

result in significant corrections to the fine details of pro- t
cesses such as relaxation of electrons due to scattering with +O(t—t)T? exp( if d7hg e T)). (36)
nonequilibrium phonons in semiconductors. t :

u(t’, =0t -t)T° exr( =i ft,dThS,eff(T)>
t

IV. TRANSPORT IN A FAR-FROM-EQUILIBRIUM
STEADY STATE The situation seems exceptionally promising, as all the ele-
) . ments of the NEGF formalism could be applied as they are.
_Reaching a well-controlled steady state, independent ofjntortunately, there are several major drawbacks. First, we
initial conditions, is the goal of applying external driving 44 not really know what the far-from-equilibrium steady-
forces in various systems, such as semiconductor devicegiaie,. actually is, and, in real systems, one obtains a single
Typically, after the characteristic relaxation timgiy, afar- ¢4 from-equilibrium state from multiple initial conditions.
from-equilibrium steady state is achieved, for which Furthermore, we are, in general, unable to solve &d),
_ and, even if we were, the solution may not be unique, and
ps~COoNSt. (1> Treia)- 3D should further be specified by a relevant set of state param-
eters (such as occupation numbers, average energy). etc.

The relaxation time is sufficiently long to destroy the infor- == ) ; :
mation about the initial correlations and build up new ones,Th'S could be accomplished by constructing an approximate

in agreement with the external driving fordds]. When the reIevgnt statistica}l operatof31], Whi.Ch satisfies the self-
transients have died out, we assert that, since the reIaxati&?nS'Stﬁ'nCy reqw;gments for' the given set. of state p?rahm—
forces have adjusted to the driving forces, more informa-  €t€rs- However, diagrammatic expansion in terms of the

tion from the environment is being passed on to the systengYStém-énvironment interaction terme{ii,)/de may not
ie. be possible, as the relevant statistical operator does not, in

general, admit Wick's decomposition. However, the Dyson
L1t p2(Dl|<[Laa(Dpal (1> Trera0- (32)  equation can be recovered for the so-calieked Green's
functions[32].
The system effectively starts to be decoupled from the envi- It is noteworthy that the results of this section actually
ronment, ancps evolves undet_,; alone. Together, the de- address an issue well known in semiclassical transport
coupling criterion Eq(32) and the steady-state criterion Eq. theory. That is, when solving, e.g., the energy-balance equa-

(31) imply tion (a version of the Boltzmann equati¢B3]) with large
energy exchanging termsvhich would correspond to the
dps , term dngrEhim(t) in Eq. (34)], it becomes difficult to inte-
TR ~iL1(D)ps~0. (33) grate over the energy axis, due to noncausality introduced by

these terms. An alternative solution starts from an equilib-
Sincel ;, is commutator-generated, corresponding to the effium distribution that is among the many initial states that
fective Hamiltonianhg e, Eq. (16), we obtain would yield a given steady state. In this way, a particular
trajectory in the system’s evolution is fixed, which makes the

[hse(t),ps]=[hs(t) + (1/dg) Trehi(t),ps]=0. (34)  integration straightforward and convergé¢ad].
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V. CONCLUSION constitute an orthonormal basis within the unit eigenspace of

Presently, considerable effort is being focused on deeperf2: Namely,
ing our understanding of transport in mesoscopic structures, ——  — —
especially on short time scales. In this paper, we have argued Plap)=|aB), (aBloy)=bus0p, (V¥ a,B,0,y).

that proper treatment of relaxation mechanisms in these sys- (A2)
tems requires treating.the system as open, and we have t.herg-can therefore be written as
fore introduced a basis for generalization of the nonequilib-
rium Green’s functions formalism for analysis of open 4
systems. Using the so-called partial-trace-free approach, we P= > laB) apBl, (A3)
have defined the two-time correlation functions and the time- ap=1
ordered single-particle Green'’s functions for an open system. . 2
In the trans?entpregime, in addition to the term egpectgd f0|and it follows that, for anyk e Hs, g,
closed systems, there are additional terms in the two-time dg
correlation functions, which correspond to the entanglement Px= > (Ex)a_ﬁ|@>, (A4)
and to the memory effects. The entanglement term is impos- a,p=1
sible to lose by manipulation of the initial state of the envi-
ronment. We have also derived the equations of motion foWhere
the two-time correlation functions in the transient regime. 1 1

On the other hand, we have shown that, in a far-from-  5..23_ /" %1u\ S _ P
equilibrium steady state, due to the balance of the driving (PX)*P=(ap|x)= \/d_E.Zl (i1 Blx)= dEiZl xief.
and relaxation forces, the system and the environment be- (A5)

come virtually independent, as far as information exchange

between them is concerned, and the system continues tdsing the fact that |x, being a vector ir‘Hé, is written in
evolve as if uncoupled from the environment and governederms of the basi§apg)} as

by an effective, modified Hamiltonian. The two-time corre- o
lation functions recover their closed-system forms, but the N i

system far-from-equilibrium density matrix remains an un- TrEx=a;:1 (Trex)*| a3>:aﬁz:1 (il X8 |ap),
known. It might be addressed by the relevant statistical op- ’ ' (A6)
erator approach, if a set of measured variables is given. This

work rigorously proves that the difference between the tranfrom Eq. (A5), we obtain Eq(7):

sient and the far-from-equilibrium steady-state regimes is

ds ds

that, during transients, the combined memory and entangle- (Trex)*P= \EE(EX)@. (A7)
ment terms are appreciable with respect to the closed-
system-like term, while they are virtually nonexistent in a APPENDIX B

far-from-equilibrium steady state. Further development of
the nonequilibrium Green’s function formalism for open sys-  In this appendix, we show that any superoperator of the
tems is in progress. form Ay —=Ig®As commutes withP, and prove Eq(11),

i.e., we demonstrate that the upper left block matrixAgfs

in the eigenbasis oP is exactlyAs. First, note thaP and
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=(1g®Ag)(pe® Trex) = AgyPX. (BY)
APPENDIX A This result is obviously independent of the choice of the

o projector, i.e., any environment density matrix can be chosen
In this appendix, we show how a bas{$aB)} in instead ofpg to induce the projector. The upper left block-
(H3, £)p-1 is constructed, and prove E(f) (details can be matrix elements oA s are given by

found in [23]). Let us choose the basi$|aB)|a,B — 1 %
—1,..dg} in H2 and the basig|ij)|i,j=1,...dg} in HZ, (Ag)5o=— 2 (i iplly®Asljo,jy)
which give rise to the tensor-product badisa,jB)|i,j E =t
=1,..dg;a,8=1,..dg} in HZ, c. Then, one finds that the [ %
vectors defined as =(AS)§§d— > &
E i,j=1
d o
R 1 E . . =(A af3
|aB>E—E lia,i B) (A1) ( S)"V'
\/d_E':l (BZ)
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APPENDIX C B 1 5
L= L = —[(Trgh)%68”— 85(Treh) 1],
We will prove thatl 1, for the Hamiltonian of the form sy {apltloy) dE[( e 2y 20 Treh) 5]
(CH
h=1®hg+hg®1g+h; 1
E®NsTNE® 257 Ming €D o we see that
is of the commutator-generated form, corresponding to an B ap_ asf_ sa
effective Hamiltonian given by Eq16). That is, the Hamil- (Lsys)a_y_(LS)vv_[(hS)o5v_ 35(hs) ],
tonian matrix elements in the basis specified in Appendix A B
are (Lenv)g_y: 0, (Co)
hi%=(hg)| 85+ 8,(he) 5+ (hin) % (C2) B

1
(Lint)g_y_ ( d_> [(TrEhint)gég_ 5g(TrEhint)g]-
yielding the matrix elements of the Liouville operator as .
o o . We have already seen from EEC5) that L,; is of the
Loy ="is 8485 —hily 5,55 . (C3  commutator-generated form, and we could say that the effec-
tive Hamiltonian was (Hdg)Trgh. However, even though

In particular, Trehen=(Trehg) 1 s#0, still Leq, 1=0, so apparently the in-
Lodi®iB = 5 §Ir(ho) 28— 5%(ho) =88 (Le)® | fluence_ of the environmgnt is not preser)ﬂ_iﬁ.. Therefore,
(Lsydpoar= 9ol (M) o(N9)51=0p0q(Ls) oy we realize that the effective system Hamiltonian, correspond-
(Lenv);:)‘(l]:}(f'y: 5g5€[(hE)lp5]q_ Sp(hE)]q]: 5Z—5€(LE)Bq |ng to Lll! Sh0u|d be ChOSGI’l as
©4 h hs+ ! Treh (C7)
= —_— r . .
According to Eq.(B2), we obtain SefS T gg B
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